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select the best candidate (2). Although oral bioavailability hasPredicting Human Oral
recently received attention from chemists, no quantitative guide-

Bioavailability of a Compound: line exists regarding the relationship between structure and
bioavailability in the literature.Development of a Novel Quantitative

Mechanistic based absorption models require in vitro infor-
Structure-Bioavailability mation such as solubility and permeability and cannot be used

for the purpose of early stage library design unless a quantitativeRelationship
model is developed for each model parameter (3). Lipinski’s
Rule of Five is the first qualitative attempt to develop tools to
help chemists design bioavailable compounds (4). It establishedC. Webster Andrews,1 Lee Bennett,1,2 and limits on properties such clogP, molecular weight, and number

Lawrence X. Yu1,3,4
of hydrogen bond donors and acceptors, beyond which oral
activity is predicted to be poor. Since its introduction, Lipinski’s
Rule of Five has been widely used in library design and candi-Received January 12, 2000; accepted March 7, 2000
date selection despite the fact that it produces a lot of false

Purpose. The purpose of this investigation was to develop a quantita- positive results. Similar, but more complex qualitative models
tive structure-bioavailability relationship (QSBR) model for drug dis- have been recently reported in the literature to identify drug
covery and development. like molecules (5,6).
Methods. A database of drugs with human oral bioavailability was The aim of the present work is to develop a novel quantita-
assembled in electronic form with structure in SMILES format. Using

tive structure-bioavailability relationship (QSBR) to explorethat database, a stepwise regression procedure was used to link oral
our ability to predict human bioavailability based on structure.bioavailability in humans and substructural fragments in drugs. The
Given a structure, the model will yield a bioavailability value.regression model was compared with Lipinski’s Rule of Five.
We will show that predictions made the QSBR model are moreResults. The human oral bioavailability database contains 591 com-

pounds. A regression model employing 85 descriptors was built to accurate than those made with Lipinski’s Rule of Five.
predict the human oral bioavailability of a compound based on its
molecular structure. Compared to Lipinski’s Rule of Five, the false
negative predictions were reduced from 5% to 3% while the false METHODS
positive predictions decreased from 78% to 53%. A set of substructural
descriptors was identified to show which fragments tend to increase/ Bioavailability Database
decrease human oral bioavailability.
Conclusions. A novel quantitative structure-bioavailability relation- Data for human oral bioavailability were obtained from
ship (QSBR) was developed. Despite a large degree of experimental the literature and an internal database (7,8). The generic drug
error, the model was reasonably predictive and stood up to cross- names and the associated bioavailability values as well as exper-
validation. When compared to Lipinski’s Rule of Five, the QSBR imental errors (if available) were entered into an electronic
model was able to reduce false positive predictions. database so that a structure-bioavailability model could be cre-
KEY WORDS: bioavailability; quantitative structure-bioavailability ated. SMILES strings were retrieved from the World Drug
relationship; Lipinski’s Rule of Five. Index (WDI, Derwent Publishers, London) or created manually.

Finally, 591 structures with SMILES, generic name, and bio-
INTRODUCTION availability value were obtained. Any compounds whose bio-

availability is strongly affected by the dose and formulationRecent developments in combinatorial chemistry and high
was excluded from the data set.throughput screening techniques have enormously increased

the possibility of finding lead compounds (1). However, many
Quantitative Structure-Bioavailability Relationshiplead compounds fail to progress into the clinic because they
(QSBR)are lacking appropriate pharmaceutical properties, such as oral

bioavailability. There would be many more new drugs than we
actually have today if all these lead compounds had desirable Development Procedure
biopharmaceutics properties. On the other hand, development
of all lead compounds is costly, and cost reduction demands SAS version 6.11 for IRIX 5.3 (SAS Institute Inc, Cary,

NC) was used for model building as well as Splus version 3.4that predictive methods be applied at the preclinical stage to
Release 1 (MathSoft Inc, Seattle, WA). The statistical aim was
to correlate bioavailability with molecular structure. Each
SMILES structure was represented in terms of a “fingerprint”

1 GlaxoWellcome Inc., Five Moore Drive, Research Triangle Park, consisting of 608 substructure counts. Each substructure defini-
North Carolina 27709. tion was defined using the SMARTS language from Daylight2 National Institute of Environmental Health Sciences, 111 Alexander Chemical Information Systems, Inc (Santa Fe, NM). An in-
Drive, MS D2-04, Research Triangle Park, North Carolina 27709.

house C program was used to pass each SMILES through3 Present address: Food and Drug Administration, Division of Product
the set of 608 substructure definitions to produce a string ofQuality Research, 5600 Fishers Lane, HFD-941, NLRC 2400B, Rock-
substructure counts for each molecule. The counts are integerville, Maryland 20857.
descriptors. The table of counts for all molecules (591 3 608)4 To whom correspondence should be addressed. (e-mail: yul@

cder.fda.gov) was then read into SAS statistical analysis software. Additional
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variables were defined using recursive partitioning. The step-
wise regression procedure (PROC REG) was used to construct
a model for bioavailability based on the most significant frag-
ment counts.

Recursive Partitioning

To improve the regression analysis, interactions between
descriptors (9) were studied using recursive partitioning, a
method that splits the bioavailability data into homogeneous
groups (bins, partitions) in a hierarchical fashion and as a func-
tion of the descriptors to create a decision tree for the bioavail-
ability. Whether or not a data split occurs is determined by the
p-value. KnowledgeSEEKER version 4.1 (www.angoss.com)
and Golden Helix Datamining (www.goldenhelix.com) soft-
ware programs were used for recursive partitioning. For the
purpose of this study, the initial two splits of the data (starting
from the root bin) were used to find pairwise descriptor interac-
tions that might impact the regression. The strategy was to find Fig. 1. The distribution of experimental human bioavailability data
bins whose mean bioavailability was considerably different for 591 compounds.
from the mean for the whole data set. The boolean classification
rules after two splits for each bin define a pairwise descriptor
interaction that might be used in a regression analysis. predictions are quantitative (predicts a %F value), they too must

be converted to a good/poor value. Hence we again applied the
Model Validation 20% cutoff to differentiate between good and poor predictions.

Leave-one-out predictions from the QSBR model were usedThe SAS software produces two kinds of predictions for
for comparison. The use of leave-one-out made our predictionsthe QSBR model, leave-everything-in versus leave-one-out
as realistic as possible and the comparison with the Rule of(Press). In the case of leave-everything-in predictions, all com-
Five as impartial as possible.pounds are considered in the model building and the resulting

model predicts the bioavailability of each compound. In the
case of leave-one-out, a model is built after removing one RESULTS AND DISCUSSION
compound and the resulting model is used to predict the bio-

Descriptive Statistics of Human Oral Bioavailabilityavailability of the one removed. This is repeated to obtain a
prediction for every compound. The histogram of the experimental bioavailability data

In addition to the leave-one-out validation, a more rigorous (Fig. 1) showed that the data set was relatively well balanced
cross-validation was performed by randomly splitting the 591 with respect to high and low bioavailability. The mean experi-
observations into a training set (approximately 80% of the data) mental human bioavailability is 57. Experimental errors were
and a prediction set (approximately 20%). Model coefficients obtained on 282 of the 591 compounds. The mean experimental
were then estimated using the training set, and this model was error is 12 (Fig. 2), which is rather large and limits the accuracy
use to make predictions for compounds in the prediction set.
The model root mean square error (RMSE) and the cross-
validated R2 for the prediction (20%) set were calculated for
each round of validation, and 2000 such rounds were carried out.

Lipinski’s Rule of Five Analysis

The Rule of Five predicts that oral activity is likely to be
poor when there are more than 5 H-bond donors, 10 H-bond
acceptors, the molecular weight is greater than 500, and/or the
calculated Log P is greater than 5 (4). We sought to apply the
Rule of Five to our experimental database to test its validity
against the experimental bioavailabilities. However, the Rule
of Five predictions are only qualitative, either good or poor.
To compare these predictions with our experimental data, we
must convert each experimental %F value into a qualitative
good/poor value. A conservative criterion of 20% was used to
classify the experimental %F values into good or poor values.

Comparison of QSBR with Lipinski’s Rule of Five

We also sought to compare the QSBR model predictions Fig. 2. Experimental error versus experimental bioavailability for 282
compounds.against the qualitative Rule of Five predictions. Since the QSBR
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pairwise descriptor interactions given 608 descriptors. Use of
recursive partitioning allowed us to find three interactions sig-
nificant in the regression model. Figure 4 shows one of these
interactions. At the top, the whole bioavailability database is
contained in one bin. This represents the “root” of the tree.
Recursive partitioning then finds significant ways to split the
bioavailability data, considering all 608 descriptors. At the first
split, X121 splits the bioavailability data set into five branches.
X121 is a descriptor representing the number of carbons, a
measure of how large the molecule is. Branch #1 contains those
molecules that have between 1 and 6 carbon atoms (1 ,5
X121 , 6). Branch #2 contains those molecules that have
between 6 and 16 carbons (6 ,5 X121 , 16), and etc. Branch
#1 is then split by X278 into two branches. X278 represents
the number of hydrogen bond acceptors. Branch #1 contains
those molecules that have between 0 and 1 hydrogen bond
acceptor atoms (X278 , 1). Branch #2 contains those molecules
that have more than 1 acceptor atom (X278 . 1).

Fig. 3. Predicted versus experimental bioavailability from the QSBR Notice that when the X121 split creates the first Branch
model using leave-one-out predictions. #1, it creates a group of 18 molecules that have an average

bioavailability of 45.91. This is not too different from the aver-
age value of the entire database, 57. However, when the X278
split creates the second Branch#2, it creates a smaller groupof any predictive models. Figure 2 shows that experimental
of 10 molecules that have an average bioavailability of 18.60.error generally increases with increasing bioavailability.
This value is significantly lower than the database average of
57. One can conclude that the two splits that created this groupQuantitative Structure-Bioavailability Relationship
of 10 molecules have created a “rule” that defines low bioavail-Model
ability. Furthermore, the “interaction” under examination is

The QSBR model obtained by stepwise regression had an between descriptors X121 and X278. The rules for each branch
R2 of 0.71 and contained 85 substructural descriptors. The “interact” (or combine in a boolean AND sense) to create a
RMSE, an estimate of the error in the model, is 18. Given the more specific rule that represents a definition of low bioavail-
mean experimental error of 12, this model error is reasonable. ability. The specific rule in Fig. 4 is that if #carbons ,6 and
The cross-validated (PRESS, leave-one-out) R2 is 0.63, indicat- #H-bond acceptors .1, then bioavailability will be lower than
ing that unique compounds are not a particularly bad problem average. If this rule is added to the regression problem in the
in the data set. A predicted versus actual plot is shown in Fig. form of an interaction descriptor (shown in entry 34, Table III),
3 using leave-one-out predictions. The ratio of observations to the regression procedure detects that the bioavailability is lower
descriptors is 591/85 or approximately 7, indicating that the than average when that descriptor is present and assigns a
model is not overfit. negative regression coefficient to it.

The results for the full model and for the 80/20 cross-
validation studies are summarized in Table I. The 80/20 results Lipinski’s Rule of Five Predictions
are again consistent with those for the full model. The mean
cross-validated R2 of 0.58 for the 80/20 splits is lower than the Using our compilation of 591 experimental %F values,
value of 0.63 obtained by leave-one-out validation, but this is we found that 490 compounds have good bioavailability while
to be expected since fewer observations are used to train the 101 compounds have poor bioavailability. The Rule of Five
model. Further, the R2 of 0.58 is not much below 0.6 that we correctly predicts 462 of 490 good bioavailability compounds
regard as adequate proof of predictability. and 22 of 101 poor bioavailability compounds. Five out of the

The interactions between descriptors were studied using total 591 compounds can not be computed for the Rule of Five
recursive partitioning. In principle, there are (608)2 possible properties and thus can not be predicted by the Rule of Five.

Comparison of QSBR with Lipinski’s Rule of Five
Table I. Results for Quantitative Structure-Bioavailability Model It is important to be able to filter out from the drug screen-

ing process compounds that are non-bioavailable. Of particularName Results
interest are false positive predictions, meaning compounds that

Number of descriptors 85 are predicted to be bioavailable but that are experimentally
Model R2 0.71 non-bioavailable. Compounds in this category should not be
Root mean squared error (RMSE) 17.92 developed but are predicted to be bioavailable; they would be
Cross validated (leave-one-out) R2 0.63 developed and would probably fail, thus driving up the cost of
Mean Cross validated (80/20 splits) R2 (20% sets) 0.58*

drug development unnecessarily.Mean RMSE for prediction (20% sets) 20.40*
Also of particular interest are the false negatives, com-

* Averaged over 2000 splits. pounds that should be developed but that are predicted to be
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Fig. 4. The decision tree that defines the boolean interaction of desciptors, X121 and X278 (entry
34 in Table III).

not bioavailable and are therefore discarded. False negatives decreases as that particular fragment count increases. Improve-
would be serious problems in both the discovery and develop- ment of molecular bioavailability is dependent upon increasing
ment settings. In the first case, you eliminate a possible drug the use of fragments with positive coefficients.
lead, while in the second case you eliminate a possible drug The descriptor with the lowest p-value is the number of
that has demonstrated biological potency. heavy atoms (non-hydrogens) in the molecule. This descriptor

Table II shows the predictions of the human oral bioavail- has a small negative coefficient but is important due to the
ability by the QSBR model and Lipinski’s Rule of Five. Lip- large number of heavy atoms in a typical drug. Because of the
inski’s model predicts 95% of the positives (5% false negatives) negative coefficient, small molecules should be more bioavaila-
correctly but only 22% of the negatives correctly (78% false ble than large ones, in agreement with Lipinski’s Rule of Five
positives). The QSBR model predicts 97% of the positives molecular weight cutoff. Each heavy atom reduces the %F
correctly (3% false negatives) and 47% of the negatives cor- value by about one percentage point. The hydrogen bond donor
rectly (53% false positives). This represents an improvement descriptor carries a negative coefficient (decreased bioavailabil-
in the prediction of bioavailability. ity) but the hydrogen bond acceptor descriptor carries a positive

coefficient (increased bioavailability).
Descriptors in QSBR Model The worst fragments for bioavailability are tetrazole, 4-

aminopyridine, and benzoquinone. Other detrimental fragmentsThe descriptors used are either substructure counts (base
are dihydropyran and cyclohexanone. Some of the best frag-10 integers) or combinations of them. Table III is a partial
ments for bioavailability are azide, 1-methylcyclopentyl alco-list of descriptors used in the QSBR model and includes the
hol, salicylic acid, and cyanoguanidine. The halogens seem toregression coefficient. The magnitude of each coefficient is a
have small positive coefficients. An N-terminal amino acidmeasure of its relative impact upon bioavailability, and its sign

indicates whether bioavailability generally increases or residue has a positive coefficient whereas an interior amino

Table II. Predictions of Human Oral Bioavailability by the QSBR model and Lipinski’s Rule of Five. Percentages Are Column Percentages*

QSBR Model Prediction Lipinski’s Rule of Five**
Experimental Number of

Bioavailability Compounds Good Poor Good Poor

Good 490 476 (97%) 14 (3%) 462 (95%) 25 (5%)
(%F . 20) True False True False

Positive Negative Positive Negative

Poor 101 54 (53%) 47 (47%) 77 (78%) 22 (22%)
(%F , 20) False True False True

Positive Negative Positive Negative

* True Positive: Experimental good bioavailability, predicted good bioavailability, too. False Positive: Experimental poor bioavailability, but
predicted good bioavailability. True Negative: Experimental poor bioavailability, predicted poor bioavailability, too. False Negative: Experi-
mental good bioavailability, but predicted poor bioavailability.

** 3 out of 490 good bioavailability compounds and 2 out of 101 poor bioavailability compounds cannot be computed for the Rule of
Five properties.
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Table III. Partial List of Descriptors Used in the QSBR Model, Sorted by Regression Coefficient

Regression
No Name SMARTS language definition coefficient

1 tetrazole [nH]1nnnc1 273
2 4-aminopyridine [nX2]1c([CX4,c,H])c([CX4,c,H])c(N)c([CX4,c,H])c1([CX4,c,H]) 262
3 benzoquinone O5[C,c]1[C,O,c],[C,c][C,c](5O)[C,c],[C,c]1 255
4 dihydropyran O1CCCcc1 240
5 quaternized pyridinium [CX4,c][n&1]1acccc1 236
6 cyclohexanone O5C1[C,O]CCC,C1 231
7 sulfhydryl group [SX2;H1][#6] 223
8 thioether [SX2](2[A,a])2[A,a] 221
9 divalent nitrogen [NX2;!R] 220

10 primary amide [CX3](2[C,c])(2[NH2])5O 218
11 tertiary amide [N](2[CX4])(2[CX4])2C5O 217
12 tertiary amine [NX3;H0](2a)(2a)2[A,a] 213
13 tertiary amine [NH0]([CX4])([CX4])[CX4] 213
14 aromatic, aliphatic ketone [CX3](2c)(2C)5O 212
15 interior amino acid residue [O]5[C,S,P]2*2[NH] 212
16 tertiary amine [NH0]([CH3])([CH3])[CX4] 26.5
17 hydrogen bond donor H2[N,O,S] 26.3
18 any heavy atom [A,a] 20.8
19 fluorine F 2.27
20 hydrogen bond acceptor [$([NX3;H0](2[CX4])(2[CX4])[CX4]),$([nX2](:c):c),

$(O5[C,S,P]),$([OX2](2[CX4])2[CX4]),$([O&2])] 4.5
21 iodine I 8.18
22 N-terminal amino acid residue [O]5[C,S,P]2*2[NH2] 10.7
23 any amide [NX3]C(5O)[#6] 13.1
24 alkanoic acid [CH2][CH2]2C(5O)[OH] 13.8
25 thioether [SX2]([#6])[#6] 14.5
26 cyclopropyl [CH]1[CH2][CH2]1 16.1
27 aromatic, aliphatic ester [CX3](2c)(2O2C)5O 18.3
28 cyanoguanidine [C](2N)(2N)5N2C#N 27.8
29 salicylic acid c1([OH])ccccc1C(5O)[OH] 29.9
30 1-methylcyclopentyl alcohol C1CC,CC1([OH])[#6] 47.9
31 azide N5[N1]5[N2] 56.7
32 acids if #COOH .1 or if #strong acids .0, then poor 224
33 small and polar molecule if #carbons ,516 and #hydroxyls .2, then poor 230
34 small and polar molecule if #carbons ,6 and #H-bond acceptors .1, then poor 235

acid residue has a negative coefficient. An aromatic, aliphatic group (sulfonic or phosphoric) appears at all, then bioavailabil-
ity should suffer.ketone is less bioavailable than an aromatic, aliphatic ester.

Primary and tertiary amides seem to have a negative coeffi-
cient, but these coefficients are mostly balanced by a positive CONCLUSIONS
coefficient for amides in general. This example demonstrates

A novel quantitative structure-bioavailability relationshipthat linear combinations of related definitions are effective as
has been developed to predict human oral bioavailability basedregressors. Other examples of this exist in the descriptor set.
on molecular structure. As compared to Lipinski’s Rule of Five,Thioethers are represented by two descriptors, the sum of the
the QSBR model gives a lower percentage of false positivecoefficients being somewhat negative. Another example
predictions. The substructural descriptors resulted from theinvolves azide and divalent nitrogen.
work can be used to guide chemists on how to increase oralAlmost 20% of the 591 compounds in the database contain
bioavailability in humans.a carboxylic acid and most of these compounds have high

bioavailability. However, only one type of carboxylic acid
appears in the list of descriptors, an alkanoic acid fragment that ACKNOWLEDGMENTS
has a positive coefficient. That carboxylic acids do not have a
more general representation in the regression model is a reflec- We would like to thank Darko Butina and Gianpaolo Bravi

for assistance with computation of fingerprints, Elaine Hopkinstion of the fact that one can attain high bioavailability without
a carboxylic acid. Nonetheless, an indicator variable was con- and Barbara Reitter for assistance with the compilation of

human bioavailability data, and David Cummins and Stanstructed that proved to be highly significant in the model. If
more than one carboxylic acid appears, or if a strongly acidic Young for discussions concerning recursive partitioning.
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